Search results
Results from the WOW.Com Content Network
When ΔS > 0 and ΔH < 0, the process is always spontaneous as written. When ΔS < 0 and ΔH > 0, the process is never spontaneous, but the reverse process is always spontaneous. When ΔS > 0 and ΔH > 0, the process will be spontaneous at high temperatures and non-spontaneous at low temperatures. When ΔS < 0 and ΔH < 0, the process will be ...
Thus, a negative value of the change in free energy is a necessary condition for a process to be spontaneous; this is the most useful form of the second law of thermodynamics in chemistry. In chemical equilibrium at constant T and p without electrical work, dG = 0.
or dG < 0. For a similar process at constant temperature and volume, the change in Helmholtz free energy must be negative, <. Thus, a negative value of the change in free energy (G or A) is a necessary condition for a process to be spontaneous. This is the most useful form of the second law of thermodynamics in chemistry, where free-energy ...
The T-V diagram of the rubber band experiment. The decrease in the temperature of the rubber band in a spontaneous process at ambient temperature can be explained using the Helmholtz free energy = where dF is the change in free energy, dL is the change in length, τ is the tension, dT is the change in temperature and S is the entropy.
All elements in their standard states (diatomic oxygen gas, graphite, etc.) have standard Gibbs free energy change of formation equal to zero, as there is no change involved. Δ f G = Δ f G˚ + RT ln Q f, where Q f is the reaction quotient. At equilibrium, Δ f G = 0, and Q f = K, so the equation becomes Δ f G˚ = −RT ln K,
and thus for a system kept at constant temperature and volume and not capable of performing electrical or other non-PV work, the total free energy during a spontaneous change can only decrease. This result seems to contradict the equation dF = −S dT − P dV, as keeping T and V constant seems to imply dF = 0, and hence F = constant.
The 2014 World Cup in Brazil has begun. Check HuffPost's World Cup dashboard throughout the tournament for standings, schedules, and detailed summaries of each match.
Heat transfer is the natural process of moving energy to or from a system, other than by work or the transfer of matter. In a diathermal system, the internal energy can only be changed by the transfer of energy as heat: Δ U s y s t e m = Q . {\displaystyle \Delta U_{\rm {system}}=Q.}