Search results
Results from the WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
For example, one could define a dictionary having a string "toast" mapped to the integer 42 or vice versa. The keys in a dictionary must be of an immutable Python type, such as an integer or a string, because under the hood they are implemented via a hash function. This makes for much faster lookup times, but requires keys not change.
This is the case for tree-based implementations, one representative being the <map> container of C++. [16] The order of enumeration is key-independent and is instead based on the order of insertion. This is the case for the "ordered dictionary" in .NET Framework, the LinkedHashMap of Java and Python. [17] [18] [19] The latter is more common.
The range of a variable is given as the set of possible values that that variable can hold. In the case of an integer, the variable definition is restricted to whole numbers only, and the range will cover every number within its range (including the maximum and minimum).
If each item to be sorted is itself an integer, and used as key as well, then the second and third loops of counting sort can be combined; in the second loop, instead of computing the position where items with key i should be placed in the output, simply append Count[i] copies of the number i to the output.
If we convert strings (with only letters in the English alphabet) into character 3-grams, we get a -dimensional space (the first dimension measures the number of occurrences of "aaa", the second "aab", and so forth for all possible combinations of three letters). Using this representation, we lose information about the string.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …