Search results
Results from the WOW.Com Content Network
This is left blank for non-orientable polyhedra and hemipolyhedra (polyhedra with faces passing through their centers), for which the density is not well-defined. Note on Vertex figure images: The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations.
The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.
Column A lists all the regular polyhedra, column B list their truncated forms. Regular polyhedra all have vertex figures p r: p.p.p etc. and Wythoff symbol p|q r. The truncated forms have vertex figure q.q.r (where q=2p and r) and Wythoff p q|r.
For example a tetrahedron is a polyhedron with four faces, a pentahedron is a polyhedron with five faces, a hexahedron is a polyhedron with six faces, etc. [29] For a complete list of the Greek numeral prefixes see Numeral prefix § Table of number prefixes in English, in the column for Greek cardinal numbers
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal; examples include Platonic and Archimedean solids as well as prisms and antiprisms. [3] The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92 such polyhedra in 1966.
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes.
If a polyhedron has Schläfli symbol {p, q}, then its dual has the symbol {q, p}. Indeed, every combinatorial property of one Platonic solid can be interpreted as another combinatorial property of the dual. One can construct the dual polyhedron by taking the vertices of the dual to be the centers of the faces of the original figure.