Search results
Results from the WOW.Com Content Network
Ethylenediamine ligand chelating to a metal with two bonds Cu 2+ complexes with nonchelating methylamine (left) and chelating ethylenediamine (right) ligands. The chelate effect is the greater affinity of chelating ligands for a metal ion than that of similar nonchelating (monodentate) ligands for the same metal.
This ligand–metal–ligand geometric parameter is used to classify chelating ligands, including those in organometallic complexes. It is most often discussed in terms of catalysis , as changes in bite angle can affect not just the activity and selectivity of a catalytic reaction but even allow alternative reaction pathways to become accessible.
Most commonly, amino acids coordinate to metal ions as N,O bidentate ligands, utilizing the amino group and the carboxylate. They are "L-X" ligands. A five-membered chelate ring is formed. The chelate ring is only slightly ruffled at the sp 3-hybridized carbon and nitrogen centers.
A classic example of a polydentate ligand is the hexadentate chelating agent EDTA, which is able to bond through six sites, completely surrounding some metals. The number of times a polydentate ligand binds to a metal centre is symbolized by " κ n ", where n indicates the number of sites by which a ligand attaches to a metal.
The chelate effect increases as the number of chelate rings increases. For example, the complex [Ni(dien) 2)] 2+ is more stable than the complex [Ni(en) 3)] 2+; both complexes are octahedral with six nitrogen atoms around the nickel ion, but dien (diethylenetriamine, 1,4,7-triazaheptane) is a tridentate ligand and en is bidentate. The number of ...
Ethylenediamine is a well-known bidentate chelating ligand for coordination compounds, with the two nitrogen atoms donating their lone pairs of electrons when ethylenediamine acts as a ligand. It is often abbreviated "en" in inorganic chemistry. The complex [Co(en) 3] 3+ is a well studied example. Schiff base ligands easily form from ...
The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac) 3 and M(acac) 2. Mixed-ligand complexes, e.g. VO(acac) 2, are also numerous.
In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. [1] The binding partner of the macromolecule is often referred to as a ligand . [ 2 ]