Search results
Results from the WOW.Com Content Network
A relatively simple situation is estimation of a proportion. It is a fundamental aspect of statistical analysis, particularly when gauging the prevalence of a specific characteristic within a population. For example, we may wish to estimate the proportion of residents in a community who are at least 65 years old.
Proportionate allocation uses a sampling fraction in each of the strata that are proportional to that of the total population. For instance, if the population consists of n total individuals, m of which are male and f female (and where m + f = n), then the relative size of the two samples (x 1 = m/n males, x 2 = f/n females) should reflect this proportion.
In survey methodology, probability-proportional-to-size (pps) sampling is a sampling process where each element of the population (of size N) has some (independent) chance to be selected to the sample when performing one draw.
In statistics a population proportion, generally denoted by or the Greek letter, [1] is a parameter that describes a percentage value associated with a population. A census can be conducted to determine the actual value of a population parameter, but often a census is not practical due to its costs and time consumption.
In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".
This fact is the basis of a hypothesis test, a "proportion z-test", for the value of p using x/n, the sample proportion and estimator of p, in a common test statistic. [35] For example, suppose one randomly samples n people out of a large population and ask them whether they agree with a certain statement. The proportion of people who agree ...
In Bayesian statistics, the model is extended by adding a probability distribution over the parameter space . A statistical model can sometimes distinguish two sets of probability distributions. The first set Q = { F θ : θ ∈ Θ } {\displaystyle {\mathcal {Q}}=\{F_{\theta }:\theta \in \Theta \}} is the set of models considered for inference.
What is missing from these statistics is the relevant base rate information. The doctor should be asked, "Out of the number of people who test positive (base rate group), how many have cancer?" [ 6 ] In assessing the probability that a given individual is a member of a particular class, information other than the base rate needs to be accounted ...