enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  3. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    An angle bisector divides the angle into two angles with equal measures. An angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle. The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that divides an angle of less than 180° into two equal angles.

  4. Trilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Trilinear_coordinates

    Intersection of the symmedians – the reflection of each median about the corresponding angle bisector Note that, in general, the incenter is not the same as the centroid ; the centroid has barycentric coordinates 1 : 1 : 1 (these being proportional to actual signed areas of the triangles BGC , CGA , AGB , where G = centroid.)

  5. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    The exterior angle theorem is not valid in spherical geometry nor in the related elliptical geometry. Consider a spherical triangle one of whose vertices is the North Pole and the other two lie on the equator. The sides of the triangle emanating from the North Pole (great circles of the sphere) both meet the equator at right angles, so this ...

  6. Cevian - Wikipedia

    en.wikipedia.org/wiki/Cevian

    In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [1] [2] Medians and angle bisectors are special cases of cevians.

  7. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    A convex quadrilateral is ex-tangential if and only if there are six concurrent angles bisectors: the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect.

  8. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. [3] [4] The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two.

  9. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    Conversely, a convex quadrilateral in which the four angle bisectors meet at a point must be tangential and the common point is the incenter. [ 4 ] According to the Pitot theorem , the two pairs of opposite sides in a tangential quadrilateral add up to the same total length, which equals the semiperimeter s of the quadrilateral: