enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Multivariate t-distribution, which is another widely used spherically symmetric multivariate distribution. Multivariate stable distribution extension of the multivariate normal distribution, when the index (exponent in the characteristic function) is between zero and two. Mahalanobis distance; Wishart distribution; Matrix normal distribution

  3. Isserlis' theorem - Wikipedia

    en.wikipedia.org/wiki/Isserlis'_theorem

    In probability theory, Isserlis' theorem or Wick's probability theorem is a formula that allows one to compute higher-order moments of the multivariate normal distribution in terms of its covariance matrix. It is named after Leon Isserlis.

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The multivariate normal distribution is a special case of the elliptical distributions. As such, its iso-density loci in the k = 2 case are ellipses and in the case of arbitrary k are ellipsoids. Rectified Gaussian distribution a rectified version of normal distribution with all the negative elements reset to 0

  5. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  6. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    The input into the normalized Gaussian function is the mean of sample means (~50) and the mean sample standard deviation divided by the square root of the sample size (~28.87/ √ n), which is called the standard deviation of the mean (since it refers to the spread of sample means).

  7. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).

  8. Gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Gamma_distribution

    The gamma distribution is the conjugate prior for the precision of the normal distribution with known mean. The matrix gamma distribution and the Wishart distribution are multivariate generalizations of the gamma distribution (samples are positive-definite matrices rather than positive real numbers).

  9. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    In probability theory and statistics, Student's t distribution (or simply the t distribution) is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.