Search results
Results from the WOW.Com Content Network
Sodium nitrate is the chemical compound with the formula Na N O 3 . This alkali metal nitrate salt is also known as Chile saltpeter (large deposits of which were historically mined in Chile ) [ 4 ] [ 5 ] to distinguish it from ordinary saltpeter, potassium nitrate .
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
The standard molar entropy of a gas at STP includes contributions from: [2] The heat capacity of one mole of the solid from 0 K to the melting point (including heat absorbed in any changes between different crystal structures). The latent heat of fusion of the solid. The heat capacity of the liquid from the melting point to the boiling point.
The unit of amount of substance in the International System of Units is the mole (symbol: mol), a base unit. [1] Since 2019, the value of the Avogadro constant N A is defined to be exactly 6.022 140 76 × 10 23 mol −1. Sometimes, the amount of substance is referred to as the chemical amount or, informally, as the "number of moles" in a given ...
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
Chemical Formula Molar Mass Melting Point Decomposition Point (°C) [3] Structure Lithium nitrate: LiNO 3: 68.946 g/mol 255 °C (491 °F; 528 K) 474 Sodium nitrate: NaNO 3: 84.9947 g/mol 308 °C (586 °F; 581° K ) 525 Potassium nitrate: KNO 3: 101.1032 g/mol 334 °C (633 °F; 607 K) 533 Rubidium nitrate: RbNO 3: 147.473 g/mol 310 °C (590 °F ...
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [2] or the conventional atomic weight.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.