Search results
Results from the WOW.Com Content Network
The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of z 2 + 4 {\displaystyle z^{2}+4} can be found using difference of two squares:
The absolute difference of two real numbers and is given by | |, the absolute value of their difference. It describes the distance on the real line between the points corresponding to x {\displaystyle x} and y {\displaystyle y} .
Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2. A more efficient method is the Euclidean algorithm, a variant in which the difference of the two numbers a and b is replaced by the remainder of the Euclidean division (also called division with remainder) of a by b.
The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement. For instance, 1 m is the same as 100 cm, but the absolute difference between 2 and 1 m is 1 while the absolute difference between 200 and 100 cm is 100, giving the impression of a larger difference. [4]
Instead of finding the difference digit by digit, one can count up the numbers between the subtrahend and the minuend. [18] Example: 1234 − 567 = can be found by the following steps: 567 + 3 = 570; 570 + 30 = 600; 600 + 400 = 1000; 1000 + 234 = 1234; Add up the value from each step to get the total difference: 3 + 30 + 400 + 234 = 667.
The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent greater than 1. However, it is larger than the geometric mean and the harmonic mean, respectively. The inequalities are strict unless both numbers are equal.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...
Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D scale where it is aligned with the left index on ...