Search results
Results from the WOW.Com Content Network
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Roy's identity reformulates Shephard's lemma in order to get a Marshallian demand function for an individual and a good from some indirect utility function.. The first step is to consider the trivial identity obtained by substituting the expenditure function for wealth or income in the indirect utility function (,), at a utility of :
The rate of change of f with respect to x is usually the partial derivative of f with respect to x; in this case, ∂ f ∂ x = y . {\displaystyle {\frac {\partial f}{\partial x}}=y.} However, if y depends on x , the partial derivative does not give the true rate of change of f as x changes because the partial derivative assumes that y is fixed.
In semiconductor lasers, the carrier lifetime is the time it takes an electron before recombining via non-radiative processes in the laser cavity. In the frame of the rate equations model, carrier lifetime is used in the charge conservation equation as the time constant of the exponential decay of carriers.
The Weir formula is a formula used in indirect calorimetry, relating metabolic rate to oxygen consumption and carbon dioxide production. According to original source, it says: [ 1 ] Metabolic rate (kcal per day) = 1.440 (3.9 VO 2 + 1.1 VCO 2 )
There are two parts of the Slutsky equation, namely the substitution effect and income effect. In general, the substitution effect is negative. Slutsky derived this formula to explore a consumer's response as the price of a commodity changes. When the price increases, the budget set moves inward, which also causes the quantity demanded to decrease.
The derivation of the Navier–Stokes equation involves the consideration of forces acting on fluid elements, so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation. Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of ...
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...