Search results
Results from the WOW.Com Content Network
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Given a solution to the SubsetSumPositive instance, adding the −T yields a solution to the SubsetSumZero instance. Conversely, given a solution to the SubsetSumZero instance, it must contain the − T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of + T , which is a solution of ...
[1] The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems.
In Computers and Intractability [8]: 226 Garey and Johnson list the bin packing problem under the reference [SR1]. They define its decision variant as follows. Instance: Finite set of items, a size () + for each , a positive integer bin capacity , and a positive integer .
This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows: Alice: Task 1 = 1, Task 2 = 2. George: Task 1 = 5, Task 2 = 8. The greedy algorithm would assign Task 1 to Alice and Task 2 to George, for a total cost of 9; but the reverse assignment has a total cost of 7.
Can all-pairs shortest paths be computed in strongly sub-cubic time, that is, in time O(V 3−ϵ) for some ϵ>0? Can the Schwartz–Zippel lemma for polynomial identity testing be derandomized? Does linear programming admit a strongly polynomial-time algorithm? (This is problem #9 in Smale's list of problems.)