Search results
Results from the WOW.Com Content Network
C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
2) = 1 / 2 n(n − 1) dimensions, and allows one to interpret the differential of a 1-vector field as its infinitesimal rotations. Only in 3 dimensions (or trivially in 0 dimensions) we have n = 1 / 2 n(n − 1), which is the most elegant and common case. In 2 dimensions the curl of a vector field is not a vector field but a ...
The first is also a perfect matching, while the second is far from it with 4 vertices unaccounted for, but has high value weights compared to the other edges in the graph. In computer science and graph theory , the maximum weight matching problem is the problem of finding, in a weighted graph , a matching in which the sum of weights is maximized.
A graph with cyclomatic number is also called a r-almost-tree, because only r edges need to be removed from the graph to make it into a tree or forest. A 1-almost-tree is a near-tree: a connected near-tree is a pseudotree, a cycle with a (possibly trivial) tree rooted at each vertex. [9] Several authors have studied the parameterized complexity ...
Here the final equality follows by the gradient theorem, since the function f(x) = | x | α+1 is differentiable on R n if α ≥ 1. If α < 1 then this equality will still hold in most cases, but caution must be taken if γ passes through or encloses the origin, because the integrand vector field | x | α − 1 x will fail to be defined there.
The problem may be generalized for a set of forbidden subgraphs : find the maximal number of edges in an -vertex graph which does not have a subgraph isomorphic to any graph from . [ 21 ] There are also hypergraph versions of forbidden subgraph problems that are much more difficult.
The "pearls" of the title include theorems, proofs, problems, and examples in graph theory.The book has ten chapters; after an introductory chapter on basic definitions, the remaining chapters material on graph coloring; Hamiltonian cycles and Euler tours; extremal graph theory; subgraph counting problems including connections to permutations, derangements, and Cayley's formula; graph ...
Erdős on Graphs: His Legacy of Unsolved Problems is a book on unsolved problems in mathematics collected by Paul Erdős in the area of graph theory. It was written by Fan Chung and Ronald Graham, based on a 1997 survey paper by Chung, [1] and published in 1998 by A K Peters. A softcover edition with some updates and corrections followed in 1999.