Search results
Results from the WOW.Com Content Network
The sidereal year is 20 min 24.5 s longer than the mean tropical year at J2000.0 (365.242 190 402 ephemeris days). [ 1 ] At present, the rate of axial precession corresponds to a period of 25,772 years, [ 3 ] so sidereal year is longer than tropical year by 1,224.5 seconds (20 min 24.5 s, ~365.24219*86400/25772).
Venus rotates retrograde with a sidereal day lasting about 243.0 Earth days, or about 1.08 times its orbital period of 224.7 Earth days; hence by the retrograde formula its solar day is about 116.8 Earth days, and it has about 1.9 solar days per orbital period.
The Earth's motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question. For example, Deimos's synodic period is 1.2648 days, 0.18% longer than Deimos's sidereal period of 1.2624 d. [citation needed]
The nirayana year is the sidereal year, that is, is the actual time required for the Earth to revolve once around the Sun with respect to a fixed point on the ecliptic, and its duration is approximately 365.256363 days (365 days 6 hours 9 minutes 10 seconds).
The mean calendar year of such a calendar approximates the sidereal year. Leaping from one lunation to another, but one Sidereal year is the period between two occurrences of the sun, as measured by the stars' solar calendar, which is derived from the Earth's orbit around the sun every 28 years. [3]
An orbit will be Sun-synchronous when the precession rate ρ = dΩ / dt equals the mean motion of the Earth about the Sun n E, which is 360° per sidereal year (1.990 968 71 × 10 −7 rad/s), so we must set n E = ΔΩ E / T E = ρ = ΔΩ / T , where T E is the Earth orbital period, while T is the period of the spacecraft ...
The Gaussian year is the sidereal year for a planet of negligible mass (relative to the Sun) and unperturbed by other planets that is governed by the Gaussian gravitational constant. Such a planet would be slightly closer to the Sun than Earth's mean distance. Its length is: 365.256 8983 days (365 d 6 h 9 min 56 s).
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).