Search results
Results from the WOW.Com Content Network
This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.
The local conservation of non-gravitational linear momentum and energy in a free-falling reference frame is expressed by the vanishing of the covariant divergence of the stress–energy tensor. Another important conserved quantity, discovered in studies of the celestial mechanics of astronomical bodies, is the Laplace–Runge–Lenz vector.
This equation is called the Cauchy momentum equation and describes the non-relativistic momentum conservation of any continuum that conserves mass. σ is a rank two symmetric tensor given by its covariant components. In orthogonal coordinates in three dimensions it is represented as the 3 × 3 matrix:
All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...
A consequence of Newton's second law of mechanics is the conservation of the angular momentum (or the “moment of momentum”) which is fundamental to all turbomachines. Accordingly, the change of the angular momentum is equal to the sum of the external moments.
A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity ...
The Navier–Stokes equations form a vector continuity equation describing the conservation of linear momentum. If the fluid is incompressible (volumetric strain rate is zero), the mass continuity equation simplifies to a volume continuity equation: [ 3 ] ∇ ⋅ u = 0 , {\displaystyle \nabla \cdot \mathbf {u} =0,} which means that the ...
Conservation of momentum is a mathematical consequence of the homogeneity (shift symmetry) of space (position in space is the canonical conjugate quantity to momentum). That is, conservation of momentum is a consequence of the fact that the laws of physics do not depend on position; this is a special case of Noether's theorem. [25] For systems ...