Search results
Results from the WOW.Com Content Network
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...
An infrared dielectric mirror in a mirror mount. A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material.
The Abeles matrix method [3] [4] [5] is a computationally fast and easy way to calculate the specular reflectivity from a stratified interface, as a function of the perpendicular momentum transfer, Q z: = =
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror .
A distributed Bragg reflector laser (DBR) is a type of single frequency laser diode. Other practical types of single frequency laser diodes include DFB lasers and external cavity diode lasers. A fourth type, the cleaved-coupled-cavity laser has not proven to be commercially viable. VCSELs are also single frequency devices. [1]
It also corrects for refraction at the Bragg condition and combined Bragg and specular reflection in grazing incidence geometries. A Bragg reflection is the splitting of the dispersion surface at the border of the Brillouin zone in reciprocal space. There is a gap between the dispersion surfaces in which no travelling waves are allowed.
When the incident light beam is at Bragg angle, a diffraction pattern emerges where an order of diffracted beam occurs at each angle θ that satisfies: [3] = Here, m = ..., −2, −1, 0, +1, +2, ... is the order of diffraction, λ is the wavelength of light in vacuum, and Λ is the wavelength of the sound. [4]
The back reflector generally has high reflectivity, and the front mirror has lower reflectivity. The light then leaks out of the front mirror and forms the output of the laser diode . [ 1 ] Since the mirrors are generally broad-band and reflect many wavelengths, the laser supports multiple longitudinal modes, or standing waves, simultaneously ...