Search results
Results from the WOW.Com Content Network
AERMOD – An atmospheric dispersion model based on atmospheric boundary layer turbulence structure and scaling concepts, including treatment of multiple ground-level and elevated point, area and volume sources. It handles flat or complex, rural or urban terrain and includes algorithms for building effects and plume penetration of inversions aloft.
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that include algorithms to solve the mathematical equations that govern the pollutant dispersion.
There are five types of air pollution dispersion models, as well as some hybrids of the five types: [1] Box model – The box model is the simplest of the model types. [2] It assumes the airshed (i.e., a given volume of atmospheric air in a geographical region) is in the shape of a box.
The model is capable of simulating passive or buoyant continuous plumes as well as short duration puff releases. It characterizes the atmospheric turbulence by two parameters, the boundary layer depth and the Monin-Obukhov length, rather the single parameter Pasquill class. [2] ADMS 3 can simultaneously model up to 100 emission sources, of ...
The atmospheric component of the CM2.X models employs a 24-level atmosphere with horizontal resolution of 2° in east–west and 2.5° in north–south directions. This resolution is sufficient to resolve the large mid-latitude cyclones responsible for weather variability.
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. Pages in category "Atmospheric dispersion modeling" The following 69 pages are in this category, out of 69 total.
The Community Earth System Model (CESM) is a fully coupled numerical simulation of the Earth system consisting of atmospheric, ocean, ice, land surface, carbon cycle, and other components. CESM includes a climate model providing state-of-art simulations of the Earth's past, present, and future. [ 1 ]
A related project is the Atmospheric Model Intercomparison Project (AMIP) for global coupled ocean-atmosphere general circulation models (GCMs). Coupled models are computer-based models of the Earth's climate, in which different parts (such as atmosphere, oceans, land, ice) are "coupled" together, and interact in simulations. [1]