enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    The bare term cylinder often refers to a solid cylinder with circular ends perpendicular to the axis, that is, a right circular cylinder, as shown in the figure. The cylindrical surface without the ends is called an open cylinder. The formulae for the surface area and the volume of a right circular cylinder have been known from early antiquity.

  3. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    A right circular cylinder is a cylinder whose generatrices are perpendicular to the bases. Thus, in a right circular cylinder, the generatrix and the height have the same measurements. [ 1 ] It is also less often called a cylinder of revolution, because it can be obtained by rotating a rectangle of sides r {\displaystyle r} and g {\displaystyle ...

  4. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    In the 3rd century BC, Archimedes, using a method resembling Cavalieri's principle, [5] was able to find the volume of a sphere given the volumes of a cone and cylinder in his work The Method of Mechanical Theorems. In the 5th century AD, Zu Chongzhi and his son Zu Gengzhi established a similar method to find a sphere's volume. [2]

  5. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    The problem of potential compressible flow over circular cylinder was first studied by O. Janzen in 1913 [4] and by Lord Rayleigh in 1916 [5] with small compressibility effects. Here, the small parameter is the square of the Mach number M 2 = U 2 / c 2 ≪ 1 {\displaystyle \mathrm {M} ^{2}=U^{2}/c^{2}\ll 1} , where c is the speed of sound .

  6. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    The two effects exactly cancel each other out. In the extreme case of the smallest possible sphere, the cylinder vanishes (its radius becomes zero) and the height equals the diameter of the sphere. In this case the volume of the band is the volume of the whole sphere, which matches the formula given above.

  7. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so. [2]

  8. Line-cylinder intersection - Wikipedia

    en.wikipedia.org/wiki/Line-cylinder_intersection

    This is why a line piercing a cylinder's volume is considered to have two points of intersection: the surface point where it enters and the one where it leaves. See § end caps. A key intuition of this sort of intersection problem is to represent each shape as an equation which is true for all points on the shape.

  9. D'Alembert's paradox - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_paradox

    Pressure distribution for the flow around a circular cylinder. The dashed blue line is the pressure distribution according to potential flow theory, resulting in d'Alembert's paradox. The solid blue line is the mean pressure distribution as found in experiments at high Reynolds numbers. The pressure is the radial distance from the cylinder ...