Search results
Results from the WOW.Com Content Network
A Nyquist plot is a parametric plot of a frequency response used in automatic control and signal processing. The most common use of Nyquist plots is for assessing the stability of a system with feedback. In Cartesian coordinates, the real part of the transfer function is plotted on the X-axis while the imaginary part is plotted on the Y-axis ...
Nichols plot of the transfer function 1/s(1+s)(1+2s) along with the modified M and N circles. To use the Hall circles, a plot of M and N circles is done over the Nyquist plot of the open-loop transfer function. The points of the intersection between these graphics give the corresponding value of the closed-loop transfer function.
The plotting tool is capable of generating frequency spectrums and performing frequency analysis to generate Bode diagrams and Nyquist plots. Hopsan models can be exported to Simulink. Plot data can be exported to XML , CSV , gnuplot and Matlab .
In the (common) case that the analog transfer function has more poles than zeros, the zeros at = may optionally be shifted down to the Nyquist frequency by putting them at =, causing the transfer function to drop off as in much the same manner as with the bilinear transform (BLT).
The following MATLAB code will plot the root locus of the closed-loop transfer function as varies using the described manual method as well as the rlocus built-in function: % Manual method K_array = ( 0 : 0.1 : 220 ). ' ; % .' is a transpose.
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
The difference between the two cases is simply due to the traditional method of plotting continuous time versus discrete time transfer functions. The continuous Laplace transform is in Cartesian coordinates where the x {\displaystyle x} axis is the real axis and the discrete Z-transform is in circular coordinates where the ρ {\displaystyle ...