Search results
Results from the WOW.Com Content Network
These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe. [135] [138] [139] [136] [133] [140] PC 1247–3406: Quasar 1991 − ...
One particularly distant body is 90377 Sedna, which was discovered in November 2003.It has an extremely eccentric orbit that takes it to an aphelion of 937 AU. [2] It takes over 10,000 years to orbit, and during the next 50 years it will slowly move closer to the Sun as it comes to perihelion at a distance of 76 AU from the Sun. [3] Sedna is the largest known sednoid, a class of objects that ...
Ceers-2112 formed soon after the big bang created the universe (which is estimated to be 13.8 billion years old), and the galaxy’s distinct structure was already in place 2.1 billion years later.
In 1964 a quasar became the most distant object in the universe for the first time. Quasars would remain the most distant objects in the universe until 1997, when a pair of non-quasar galaxies would take the title (galaxies CL 1358+62 G1 & CL 1358+62 G2 lensed by galaxy cluster CL 1358+62 ).
Nasa’s James Webb Space Telescope has found the two most distant galaxies ever seen, the space agency has said. The two galaxies are the earliest ever seen in the universe, dating back to when ...
Astronomers have detected one of the most distant and energetic mysterious fast radio bursts in space, a millisecond-long blast of radio waves that traveled 8 billion years to reach Earth.
The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the further away an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an ...
From this perspective, Hubble's law is a fundamental relation between (i) the recessional velocity associated with the expansion of the universe and (ii) the distance to an object; the connection between redshift and distance is a crutch used to connect Hubble's law with observations.