Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
Layers of the ionosphere.The Kennelly–Heaviside layer is the E region. The Heaviside layer, [1] [2] sometimes called the Kennelly–Heaviside layer, [3] [4] named after Arthur E. Kennelly and Oliver Heaviside, is a layer of ionised gas occurring roughly between 90km and 150 km (56 and 93 mi) above the ground — one of several layers in the Earth's ionosphere.
The F 2 layer exists from about 220 to 800 km (140 to 500 miles) above the surface of the Earth. The F 2 layer is the principal reflecting layer for HF radio communications during both day and night. The horizon-limited distance for one-hop F 2 propagation is usually around 4,000 km (2,500 miles). The F 2 layer has about 10 6 e/cm 3. However ...
The various layers of Earth's ionosphere, important to HF radio propagation, begin below 100 km and extend beyond 500 km. By comparison, the International Space Station and Space Shuttle typically orbit at 350–400 km, within the F-layer of the ionosphere, where they encounter enough atmospheric drag to require reboosts every few months ...
The F-region is the highest region of the ionosphere. Consisting of the F1 and F2 layers, its distance above the Earth's surface is approximately 200–500 km. [7] The duration of these storms are around a day and reoccur every approximately 27.3 days. [6] Most ionospheric abnormalities occur in the F2 and E layers of the ionosphere.
This category has only the following subcategory. G. Geomagnetic storms (16 P) Pages in category "Ionosphere" ... Kennelly–Heaviside layer; M.
Earth's outer core is a fluid layer about 2,260 km (1,400 mi) in height (i.e. distance from the highest point to the lowest point at the edge of the inner core) [36% of the Earth's radius, 15.6% of the volume] and composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. [31]
The thickness of the ozone layer varies worldwide and is generally thinner near the equator and thicker near the poles. [11] Thickness refers to how much ozone is in a column over a given area and varies from season to season. The reasons for these variations are due to atmospheric circulation patterns and solar intensity. [12]