enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  3. Umklapp scattering - Wikipedia

    en.wikipedia.org/wiki/Umklapp_scattering

    As shown in the right panel of Figure 1, k-vectors outside the first Brillouin zone are physically equivalent to vectors inside it and can be mathematically transformed into each other by the addition of a reciprocal lattice vector G. These processes are called Umklapp scattering and change the total phonon momentum.

  4. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.

  5. Multidimensional sampling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_sampling

    Fig. 1: A hexagonal sampling lattice and its basis vectors v 1 and v 2 Fig. 2: The reciprocal lattice corresponding to the lattice of Fig. 1 and its basis vectors u 1 and u 2 (figure not to scale). The concept of a bandlimited function in one dimension can be generalized to the notion of a wavenumber-limited function in higher dimensions.

  6. Low-energy electron diffraction - Wikipedia

    en.wikipedia.org/wiki/Low-energy_electron...

    The size of the Ewald's sphere and hence the number of diffraction spots on the screen is controlled by the incident electron energy. From the knowledge of the reciprocal lattice models for the real space lattice can be constructed and the surface can be characterized at least qualitatively in terms of the surface periodicity and the point group.

  7. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    For example, in a crystal's k-space, there is an infinite set of points called the reciprocal lattice which are "equivalent" to k = 0 (this is analogous to aliasing). Likewise, the " first Brillouin zone " is a finite volume of k -space, such that every possible k is "equivalent" to exactly one point in this region.

  8. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space.

  9. Ewald's sphere - Wikipedia

    en.wikipedia.org/wiki/Ewald's_sphere

    In the Figure the red dot is the origin for the wavevectors, the black spots are reciprocal lattice points (vectors) and shown in blue are three wavevectors. For the wavevector k 1 {\displaystyle \mathbf {k_{1}} } the corresponding reciprocal lattice point g 1 {\displaystyle \mathbf {g_{1}} } lies on the Ewald sphere, which is the condition for ...