Search results
Results from the WOW.Com Content Network
Using the above principles, equations that relate a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either temperature or a chemical molecule, have been derived for homomeric and heteromeric proteins, from monomers to trimers and potentially tetramers.
A chevron plot is a way of representing protein folding kinetic data in the presence of varying concentrations of denaturant that disrupts the protein's native tertiary structure. The plot is known as "chevron" plot because of the canonical v , or chevron shape observed when the logarithm of the observed relaxation rate is plotted as a function ...
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
A thermal shift assay (TSA) measures changes in the thermal denaturation temperature and hence stability of a protein under varying conditions such as variations in drug concentration, buffer formulation (pH or ionic strength), redox potential, or sequence mutation. The most common method for measuring protein thermal shifts is differential ...
Once the mutants have been established, two methods can be employed to calculate the free energy associated with a salt bridge. One method involves the observation of the melting temperature of the wild-type protein versus that of the three mutants. The denaturation can be monitored through a change in circular dichroism. A reduction in melting ...
Denaturation midpoint of a protein is defined as the temperature (T m) or concentration of denaturant (C m) at which both the folded and unfolded states are equally populated at equilibrium (assuming two-state protein folding). T m is often determined using a thermal shift assay.
Shaking with alkali [1] and other synthesis methods have been reported. [3] Because of its low toxicity, it is useful as a buffer for biological systems with effective ranges between pH 2.5–3.8 and 7.5–8.9; [4] however, it is only moderately stable for storage once dissolved. [5] It is used in the synthesis of more complex peptides. [6]
The C 0 t value is the product of C 0 (the initial concentration of DNA), t (time in seconds), and a constant that depends on the concentration of cations in the buffer. Repetitive DNA will renature at low C 0 t values, while complex and unique DNA sequences will renature at high C 0 t values. The fast renaturation of the repetitive DNA is ...