enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability-generating function - Wikipedia

    en.wikipedia.org/wiki/Probability-generating...

    Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.

  3. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The global form of an analytic function is completely determined by its local behavior in the following sense: if f and g are two analytic functions defined on the same connected open set U, and if there exists an element c ∈ U such that f (n) (c) = g (n) (c) for all n ≥ 0, then f(x) = g(x) for all x ∈ U. If a power series with radius of ...

  4. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    To determine the value (), note that we rotated the plane so that the line x+y = z now runs vertically with x-intercept equal to c. So c is just the distance from the origin to the line x + y = z along the perpendicular bisector, which meets the line at its nearest point to the origin, in this case ( z / 2 , z / 2 ) {\displaystyle (z/2,z/2)\,} .

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The beta-binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with heterogeneity in the success probability. The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because ...

  6. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).

  7. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.

  8. Zariski's main theorem - Wikipedia

    en.wikipedia.org/wiki/Zariski's_main_theorem

    Suppose that V is a smooth variety of dimension greater than 1 and V′ is given by blowing up a point W on V. Then V is normal at W, and the component of the transform of W is a projective space, which has dimension greater than W as predicted by Zariski's original form of his main theorem. In the previous example the transform of W was ...

  9. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...