Search results
Results from the WOW.Com Content Network
The conventional view that marine magnetic anomalies arose in the upper, extrusive layer of the oceanic crust requires a rethink because perfectly normal magnetic anomalies arise at core complexes, where the crust has been stripped away. This suggests that the lower part of the ocean crust contains a substantial magnetic signature.
Magnetic anomalies off west coast of North America. Dashed lines are spreading centers on mid-ocean ridges. The Vine–Matthews-Morley hypothesis correlates the symmetric magnetic patterns seen on the seafloor with geomagnetic field reversals. At mid-ocean ridges, new crust is created by the injection, extrusion, and solidification of magma.
The lines represent tectonic plate boundaries. Continental and oceanic crust on the Earth's upper mantle. Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic ...
The oceanic crust is in a constant state of 'renewal' at the mid-ocean ridges by the processes of seafloor spreading and plate tectonics. New magma steadily emerges onto the ocean floor and intrudes into the existing ocean crust at and near rifts along the ridge axes. The rocks making up the crust below the seafloor are youngest along the axis ...
Scientists believe they’ve discovered an ancient ocean floor comprising a new layer between Earth’s mantle and core.
Plate tectonics is a scientific theory developed in the 1960s that explains major land form events, such as mountain building, volcanoes, earthquakes, and mid-ocean ridge systems. [26] The idea is that Earth's most outer layer, known as the lithosphere , that is made up of the crust and mantle is divided into extensive plates of rock.
Surface map of oceanic crust showing the generation of younger (red) crust and eventual destruction of older (blue) crust. This demonstrates the crustal spatial evolution at the Earth's surface dictated by plate tectonics. Earth's crustal evolution involves the formation, destruction and renewal of the rocky outer shell at that planet's surface.
Fluid motions occur in the magnetosphere, atmosphere, ocean, mantle and core. Even the mantle, though it has an enormous viscosity, flows like a fluid over long time intervals. This flow is reflected in phenomena such as isostasy, post-glacial rebound and mantle plumes. The mantle flow drives plate tectonics and the flow in the Earth's core ...