enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean inter-particle distance - Wikipedia

    en.wikipedia.org/wiki/Mean_inter-particle_distance

    We want to calculate probability distribution function of distance to the nearest neighbor (NN) particle. (The problem was first considered by Paul Hertz; [1] for a modern derivation see, e.g.,. [2]) Let us assume particles inside a sphere having volume , so that = /. Note that since the particles in the ideal gas are non-interacting, the ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  4. Mean free path - Wikipedia

    en.wikipedia.org/wiki/Mean_free_path

    In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles.

  5. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...

  8. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    + represents 1/<d>, where d is the average distance between two molecules. This equation assumes the upper limit of a diffusive collision frequency between A and B is when the first neighbor layer starts to feel the evolution of the concentration gradient, whose reaction order is ⁠2 + 1 / 3 ⁠ instead of 2. Both the Smoluchowski equation and ...

  9. Mean squared displacement - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_displacement

    The differential equation above takes the form of 1D heat equation. The one-dimensional PDF below is the Green's function of heat equation (also known as Heat kernel in mathematics): P ( x , t ) = 1 4 π D t exp ⁡ ( − ( x − x 0 ) 2 4 D t ) . {\displaystyle P(x,t)={\frac {1}{\sqrt {4\pi Dt}}}\exp \left(-{\frac {(x-x_{0})^{2}}{4Dt}}\right).}