Search results
Results from the WOW.Com Content Network
In celestial navigation, lunar distance, also called a lunar, is the angular distance between the Moon and another celestial body. The lunar distances method uses this angle and a nautical almanac to calculate Greenwich time if so desired, or by extension any other time. That calculated time can be used in solving a spherical triangle.
Lunar Laser Ranging (LLR) is the practice of measuring the distance between the surfaces of the Earth and the Moon using laser ranging. The distance can be calculated from the round-trip time of laser light pulses travelling at the speed of light , which are reflected back to Earth by the Moon's surface or by one of several retroreflectors ...
In contrast, the Lunar distance (LD or ), or Earth–Moon characteristic distance, is a unit of measure in astronomy. More technically, it is the semi-major axis of the geocentric lunar orbit . The lunar distance is on average approximately 385,000 km (239,000 mi), or 1.28 light-seconds ; this is roughly 30 times Earth's diameter or 9.5 times ...
Distance from the Earth to the Moon: S: Distance from the Earth to the Sun: ℓ: Radius of the Moon: s: Radius of the Sun: t: Radius of the Earth: D: Distance from the center of Earth to the vertex of Earth's shadow cone d: Radius of the Earth's shadow at the location of the Moon n: Ratio, d/ℓ (a directly observable quantity during a lunar ...
A diagram of a typical nautical sextant, a tool used in celestial navigation to measure the angle between two objects viewed by means of its optical sight. Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the ...
The most significant improvement of position observations of the Moon have been the Lunar Laser Ranging measurements, obtained using Earth-bound lasers and special retroreflectors placed on the surface of the Moon. The time-of-flight of a pulse of laser light to one of the retroreflectors and back gives a measure of the Moon's distance at that ...
move to sidebar hide. From Wikipedia, the free encyclopedia
To determine the distance to the reflector to 1 mm precision, or 7 ps, by averaging, the measurement needs at least (400/7) 2 ≈ 3000 photons. This explains why a much larger system is needed to improve the existing measurements—the pre-APOLLO 2 cm RMS range precision required only about 10 photons, even at the worst-case orientation of the ...