enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g2, ... , gn−1}, where e is the identity element and gi = gj whenever i ≡ j (mod n); in particular gn = g0 = e, and g−1 = gn−1.

  3. Direct product of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_product_of_groups

    Let R + be the group of positive real numbers under multiplication. Then the direct product R + × R + is the group of all vectors in the first quadrant under the operation of component-wise multiplication (x 1, y 1) × (x 2, y 2) = (x 1 × x 2, y 1 × y 2). Let G and H be cyclic groups with two elements each:

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The exponent of the group, that is, the least common multiple of the orders in the cyclic groups, is given by the Carmichael function (sequence A002322 in the OEIS). In other words, λ ( n ) {\displaystyle \lambda (n)} is the smallest number such that for each a coprime to n , a λ ( n ) ≡ 1 ( mod n ) {\displaystyle a^{\lambda (n)}\equiv 1 ...

  5. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The n th roots of unity form under multiplication a cyclic group of order n, and in fact these groups comprise all of the finite subgroups of the multiplicative group of the complex number field. A generator for this cyclic group is a primitive n th root of unity. The n th roots of unity form an irreducible representation of any cyclic group of ...

  6. Cyclic compound - Wikipedia

    en.wikipedia.org/wiki/Cyclic_compound

    A cyclic compound (or ring compound) is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon (i.e., are carbocycles), none of the atoms are carbon (inorganic cyclic ...

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    One proof is to note that φ(d) is also equal to the number of possible generators of the cyclic group C d ; specifically, if C d = g with g d = 1, then g k is a generator for every k coprime to d. Since every element of C n generates a cyclic subgroup, and each subgroup C d ⊆ C n is generated by precisely φ(d) elements of C n, the formula ...

  8. Subgroups of cyclic groups - Wikipedia

    en.wikipedia.org/wiki/Subgroups_of_cyclic_groups

    Subgroups of cyclic groups. In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1][2] This result has been called the fundamental theorem of cyclic groups. [3][4]

  9. Cycle graph (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cycle_graph_(algebra)

    In group theory, a subfield of abstract algebra, a cycle graph of a group is an undirected graph that illustrates the various cycles of that group, given a set of generators for the group. Cycle graphs are particularly useful in visualizing the structure of small finite groups. A cycle is the set of powers of a given group element a, where an ...