Search results
Results from the WOW.Com Content Network
The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows: [3] Deduce the candidate of zero of the polynomial from its leading coefficient and constant term .
Vieta's formulas can equivalently be written as for k = 1, 2, ..., n (the indices ik are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the elementary symmetric polynomials of the roots. Vieta's system (*) can be solved by Newton's method through an explicit simple ...
Weierstrass factorization theorem. In mathematics, and particularly in the field of complex analysis, the Weierstrass factorization theorem asserts that every entire function can be represented as a (possibly infinite) product involving its zeroes. The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts ...
Matrix decomposition. In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
Factorization of polynomials. In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of ...
The Riemann zeta function ζ(s) is a function of a complex variable s = σ + it, where σ and t are real numbers. (The notation s, σ, and t is used traditionally in the study of the zeta function, following Riemann.) When Re (s) = σ > 1, the function can be written as a converging summation or as an integral: where. is the gamma function.
Characteristic polynomial. Polynomial whose roots are the eigenvalues of a matrix. In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients.
Assume that p − 1, where p is the smallest prime factor of n, can be modelled as a random number of size less than √ n. By Dixon's theorem, the probability that the largest factor of such a number is less than (p − 1) 1/ε is roughly ε −ε; so there is a probability of about 3 −3 = 1/27 that a B value of n 1/6 will yield a factorisation.