Search results
Results from the WOW.Com Content Network
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications ...
RSA numbers. In mathematics, the RSA numbers are a set of large semiprimes (numbers with exactly two prime factors) that were part of the RSA Factoring Challenge. The challenge was to find the prime factors of each number. It was created by RSA Laboratories in March 1991 to encourage research into computational number theory and the practical ...
The RSA Factoring Challenge was a challenge put forward by RSA Laboratories on March 18, 1991 [1] to encourage research into computational number theory and the practical difficulty of factoring large integers and cracking RSA keys used in cryptography. They published a list of semiprimes (numbers with exactly two prime factors) known as the ...
RSA problem. In cryptography, the RSA problem summarizes the task of performing an RSA private-key operation given only the public key. The RSA algorithm raises a message to an exponent, modulo a composite number N whose factors are not known. Thus, the task can be neatly described as finding the eth roots of an arbitrary number, modulo N.
PKCS 1. In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories. It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography. It defines the mathematical properties of public and private keys ...
RSA Security LLC, [5] formerly RSA Security, Inc. and trade name RSA, is an American computer and network security company with a focus on encryption and decryption standards. RSA was named after the initials of its co-founders, Ron Rivest , Adi Shamir and Leonard Adleman , after whom the RSA public key cryptography algorithm was also named. [ 6 ]
The decryption of the 1977 ciphertext involved the factoring of a 129-digit (426 bit) number, RSA-129, in order to recover the plaintext. Ron Rivest estimated in 1977 that factoring a 125-digit semiprime would require 40 quadrillion years, using the best algorithm known and the fastest computers of the day. [ 6 ]
The value d can then be used to sign arbitrary OS software. The keys factored by RSA Lattice Siever (the TI-92+, TI-73, TI-89, Voyage 200, TI-89 Titanium, TI-84+ / TI-84 Silver Edition OS signing and date-stamp signing keys) are similar but with different values of n, p, q, and d. A single date-stamp signing key is shared by all models.