enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The table of specific heat capacities gives the volumetric heat capacity as well as the specific heat capacity of some substances and engineering materials, and (when applicable) the molar heat capacity. Generally, the most notable constant parameter is the volumetric heat capacity (at least for solids) which is around the value of 3 megajoule ...

  3. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    In thermodynamics, the specific heat capacity (symbol c) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance ...

  4. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    1.365. In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (CP) to heat capacity at constant volume (CV). It is sometimes also known as the isentropic expansion factor and is denoted by γ ...

  5. Heat capacities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Heat_capacities_of_the...

    CRC. As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Heat Capacity of the Elements at 25 °C.

  6. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    ĉ V is the dimensionless specific heat capacity at constant volume, approximately ⁠ 3 / 2 ⁠ for a monatomic gas, ⁠ 5 / 2 ⁠ for diatomic gas, and 3 for non-linear molecules if we treat translations and rotations classically and ignore quantum vibrational contribution and electronic excitation.

  7. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    A specific property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, , by the mass of the system gives the specific heat capacity, , which is an intensive property. When the extensive property is represented by ...

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The law was actually the last of the laws to be formulated. First law of thermodynamics. d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where. d U {\displaystyle dU} is the infinitesimal increase in internal energy of the system, δ Q {\displaystyle \delta Q} is the infinitesimal heat flow into the system, and.

  9. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    It is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order to cause an increase of one unit in its temperature. The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K −1 ⋅m −3. The volumetric heat capacity can also be expressed as the specific heat ...