enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product. [1]

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    Definition. The factorial number system is a mixed radix numeral system: the i -th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i− 1)! (its place value). 7! 6!

  4. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Roughly speaking, the simplest version of Stirling's formula can be quickly obtained by approximating the sum with an integral: The full formula, together with precise estimates of its error, can be derived as follows. Instead of approximating , one considers its natural logarithm, as this is a slowly varying function:

  5. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    Double factorial. The fifteen different chord diagrams on six points, or equivalently the fifteen different perfect matchings on a six-vertex complete graph. These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that ...

  6. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Legendre's formula. In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre. It is also sometimes known as de Polignac's formula, after Alphonse de Polignac.

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    When the variable is a positive integer, the number () is equal to the number of n-permutations from a set of x items, that is, the number of ways of choosing an ordered list of length n consisting of distinct elements drawn from a collection of size .

  8. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    Factorion. In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [1][2][3] The name factorion was coined by the author Clifford A. Pickover. [4]

  9. Googol - Wikipedia

    en.wikipedia.org/wiki/Googol

    Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics. To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg , can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg ...