enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Stirling's approximation. Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Legendre's formula describes the exponents of the prime numbers in a prime factorization of the factorials, and can be used to count the trailing zeros of the factorials. Daniel Bernoulli and Leonhard Euler interpolated the factorial function to a continuous function of complex numbers, except at the negative integers, the (offset) gamma function.

  4. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A similar result holds for the rising factorial and the backward difference operator. The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and ...

  5. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    Double factorial. The fifteen different chord diagrams on six points, or equivalently the fifteen different perfect matchings on a six-vertex complete graph. These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that ...

  6. Stirling number - Wikipedia

    en.wikipedia.org/wiki/Stirling_number

    Stirling numbers express coefficients in expansions of falling and rising factorials (also known as the Pochhammer symbol) as polynomials.. That is, the falling factorial, defined as = (+) , is a polynomial in x of degree n whose expansion is

  7. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    Definition by algebra. Signed Stirling numbers of the first kind are the coefficients in the expansion of the falling factorial. into powers of the variable : For example, , leading to the values , , and . The unsigned Stirling numbers may also be defined algebraically as the coefficients of the rising factorial: .

  8. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    t. e. In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point.

  9. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    In mathematics, the gamma function (represented by Γ, capital Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a ...