Search results
Results from the WOW.Com Content Network
For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.
If a ≡ b (mod m), then it is generally false that k a ≡ k b (mod m). However, the following is true: If c ≡ d (mod φ(m)), where φ is Euler's totient function, then a c ≡ a d (mod m) —provided that a is coprime with m. For cancellation of common terms, we have the following rules: If a + k ≡ b + k (mod m), where k is any integer ...
mod is the modulo operation or remainder after division Note: In this algorithm January and February are counted as months 13 and 14 of the previous year. E.g. if it is 2 February 2010 (02/02/2010 in DD/MM/YYYY), the algorithm counts the date as the second day of the fourteenth month of 2009 (02/14/2009 in DD/MM/YYYY format)
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
Scheme offer two functions, remainder and modulo – Ada and PL/I have mod and rem, while Fortran has mod and modulo; in each case, the former agrees in sign with the dividend, and the latter with the divisor. Common Lisp and Haskell also have mod and rem, but mod uses the sign of the divisor and rem uses the sign of the dividend.
Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.