Search results
Results from the WOW.Com Content Network
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...
In the following Diophantine equations, w, x, y, and z are the unknowns and the other letters are given constants: a x + b y = c {\displaystyle ax+by=c} This is a linear Diophantine equation or Bézout's identity. w 3 + x 3 = y 3 + z 3 {\displaystyle w^ {3}+x^ {3}=y^ {3}+z^ {3}} The smallest nontrivial solution in positive integers is 123 + 13 ...
This equation immediately gives the k-th Newton identity in k variables. Since this is an identity of symmetric polynomials (homogeneous) of degree k, its validity for any number of variables follows from its validity for k variables. Concretely, the identities in n < k variables can be deduced by setting k − n variables to zero.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum. A necessary condition for an integer to equal such a sum is that cannot equal 4 or 5 modulo 9, because the cubes modulo 9 are 0, 1, and −1, and ...
List of logarithmic identities. MacWilliams identity. Matrix determinant lemma. Newton's identity. Parseval's identity. Pfister's sixteen-square identity. Sherman–Morrison formula. Sophie Germain identity. Sun's curious identity.
Cube root. In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other ...