enow.com Web Search

  1. Ads

    related to: convex shapes examples pictures and ideas for kindergarten math
  2. education.com has been visited by 100K+ users in the past month

    This site is a teacher's paradise! - The Bender Bunch

Search results

  1. Results from the WOW.Com Content Network
  2. Convex polygon - Wikipedia

    en.wikipedia.org/wiki/Convex_polygon

    An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]

  3. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    In geometry, a set of points is convex if it contains every line segment between two points in the set. Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. [1][2] For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example ...

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Polyhedron. In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολฯ (poly-) 'many' and แผ•δρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.

  5. Convex hull - Wikipedia

    en.wikipedia.org/wiki/Convex_hull

    The convex hull of the red set is the blue and red convex set. In geometry, the convex hull, convex envelope or convex closure[1] of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all ...

  6. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    An affine convex cone is the set resulting from applying an affine transformation to a convex cone. [7] A common example is translating a convex cone by a point p: p + C. Technically, such transformations can produce non-cones. For example, unless p = 0, p + C is not a linear cone. However, it is still called an affine convex cone.

  7. Convex geometry - Wikipedia

    en.wikipedia.org/wiki/Convex_geometry

    Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.

  1. Ads

    related to: convex shapes examples pictures and ideas for kindergarten math