Search results
Results from the WOW.Com Content Network
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Density Young's Modulus Shear Modulus Bulk Modulus Poisson's Ratio Tensile Yield Stress Tensile Ultimate Stress Hardness Uniform Elongation Min: 4.429 g/cm 3 (0.160 lb/cu in): 104 GPa (15.1 × 10 ^ 6 psi)
Young's modulus (E) - apply small, incremental changes in the lattice parameter along a specific axis and compute the corresponding stress response using DFT. Young’s modulus is then calculated as E=σ/ϵ, where σ is the stress and ϵ is the strain. [4] Initial structure: Start with a relaxed structure of the material.
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness . High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...
Plot of Young's modulus vs density with log-log scaling. The colors represent families of materials. The first plot on the right shows density and Young's modulus, in a linear scale. The second plot shows the same materials attributes in a log-log scale. Materials families (polymers, foams, metals, etc.) are identified by colors.
The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties (geometric properties) such ...