Search results
Results from the WOW.Com Content Network
The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth ...
Moreover, every Dyck string comes from a stack-sortable permutation in this way, and every two different stack-sortable permutations produce different Dyck strings. For this reason, the number of stack-sortable permutations of length n is the same as the number of Dyck strings of length 2n, the Catalan number
Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.
In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.
The object L 1 (lists over the terminal object) has the universal property of a natural number object. In any category with lists, one can define the length of a list L A to be the unique morphism l : L A → L 1 which makes the following diagram commute: [3]
A balanced sequence is one for which the set of factors is balanced. [12] A balanced sequence has complexity function at most n+1. [13] A Sturmian word over a binary alphabet is one with complexity function n + 1. [14] A sequence is Sturmian if and only if it is balanced and aperiodic. [2] [15] An example is the Fibonacci word.
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...
For instance, in the case of n = 2, the superpermutation 1221 contains all possible permutations (12 and 21), but the shorter string 121 also contains both permutations. It has been shown that for 1 ≤ n ≤ 5, the smallest superpermutation on n symbols has length 1! + 2! + … + n! (sequence A180632 in the OEIS). The first four smallest ...