enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lehmer code - Wikipedia

    en.wikipedia.org/wiki/Lehmer_code

    The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth ...

  3. Stack-sortable permutation - Wikipedia

    en.wikipedia.org/wiki/Stack-sortable_permutation

    Moreover, every Dyck string comes from a stack-sortable permutation in this way, and every two different stack-sortable permutations produce different Dyck strings. For this reason, the number of stack-sortable permutations of length n is the same as the number of Dyck strings of length 2n, the Catalan number

  4. Enumerative combinatorics - Wikipedia

    en.wikipedia.org/wiki/Enumerative_combinatorics

    Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.

  5. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.

  6. List object - Wikipedia

    en.wikipedia.org/wiki/List_object

    The object L 1 (lists over the terminal object) has the universal property of a natural number object. In any category with lists, one can define the length of a list L A to be the unique morphism l : L A → L 1 which makes the following diagram commute: [3]

  7. Complexity function - Wikipedia

    en.wikipedia.org/wiki/Complexity_function

    A balanced sequence is one for which the set of factors is balanced. [12] A balanced sequence has complexity function at most n+1. [13] A Sturmian word over a binary alphabet is one with complexity function n + 1. [14] A sequence is Sturmian if and only if it is balanced and aperiodic. [2] [15] An example is the Fibonacci word.

  8. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...

  9. Superpermutation - Wikipedia

    en.wikipedia.org/wiki/Superpermutation

    For instance, in the case of n = 2, the superpermutation 1221 contains all possible permutations (12 and 21), but the shorter string 121 also contains both permutations. It has been shown that for 1 ≤ n ≤ 5, the smallest superpermutation on n symbols has length 1! + 2! + … + n! (sequence A180632 in the OEIS). The first four smallest ...