Search results
Results from the WOW.Com Content Network
Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane.
The value of a function f at an element x of its domain (that is, the element of the codomain that is associated with x) is denoted by f(x); for example, the value of f at x = 4 is denoted by f(4). Commonly, a specific function is defined by means of an expression depending on x, such as () = +; in this case, some computation, called function ...
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results. [40] Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts ...
A function (also called mapping [24]): a binary relation that is functional and total. In other words, every element of the domain has exactly one image element. For example, the red and green binary relations in the diagram are functions, but the blue and black ones are not. An injection: a function that is injective. For example, the green ...
A frequent particular case occurs when is a function from to another set ; if implies () = then is said to be a morphism for , a class invariant under, or simply invariant under. This occurs, e.g. in the character theory of finite groups.
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.