Search results
Results from the WOW.Com Content Network
A projective basis is + points in general position, in a projective space of dimension n. A convex basis of a polytope is the set of the vertices of its convex hull. A cone basis [5] consists of one point by edge of a polygonal cone. See also a Hilbert basis (linear programming).
In the context of proofs, this phrase is often seen in induction arguments when passing from the base case to the induction step, and similarly, in the definition of sequences whose first few terms are exhibited as examples of the formula giving every term of the sequence. necessary and sufficient
This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory
Bases are ubiquitous throughout topology. The sets in a base for a topology, which are called basic open sets, are often easier to describe and use than arbitrary open sets. [1] Many important topological definitions such as continuity and convergence can be checked using only basic open sets instead of arbitrary open sets. Some topologies have ...
In a positional numeral system, the radix (pl.: radices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.
A basis (or reference frame) of a (universal) algebra is a function that takes some algebra elements as values () and satisfies either one of the following two equivalent conditions. Here, the set of all () is called the basis set, whereas several authors call it the "basis".
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
However two slightly different definitions are common. 1. A ⊂ B {\displaystyle A\subset B} may mean that A is a subset of B , and is possibly equal to B ; that is, every element of A belongs to B ; expressed as a formula, ∀ x , x ∈ A ⇒ x ∈ B {\displaystyle \forall {}x,\,x\in A\Rightarrow x\in B} .