enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Georg Cantor published this proof in 1891, [1] [2]: 20– [3] but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. [ 4 ] [ 5 ] However, it demonstrates a general technique that has since been used in a wide range of proofs, [ 6 ] including the first of Gödel's incompleteness theorems [ 2 ] and ...

  3. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  5. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    Cantor gave two proofs that the cardinality of the set of integers is strictly smaller than that of the set of real numbers (see Cantor's first uncountability proof and Cantor's diagonal argument). His proofs, however, give no indication of the extent to which the cardinality of the integers is less than that of the real numbers.

  6. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.

  7. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    The proof of Cantor's second theorem came from Dedekind. However, it omits Dedekind's explanation of why the limits a ∞ and b ∞ exist. [45] Cantor restricted his first theorem to the set of real algebraic numbers. The proof he was using demonstrates the countability of the set of all algebraic numbers. [20]

  8. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    Quadratic irrationals are used in field theory to construct field extensions of the field of rational numbers Q. Given the square-free integer c, the augmentation of Q by quadratic irrationals using √ c produces a quadratic field Q(√ c). For example, the inverses of elements of Q(√ c) are of the same form as the above algebraic numbers:

  9. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.