enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    This polynomial is called the characteristic polynomial of A. Equation is called the characteristic equation or the secular equation of A. The fundamental theorem of algebra implies that the characteristic polynomial of an n-by-n matrix A, being a polynomial of degree n, can be factored into the product of n linear terms,

  4. Faddeev–LeVerrier algorithm - Wikipedia

    en.wikipedia.org/wiki/Faddeev–LeVerrier_algorithm

    Urbain Le Verrier (1811–1877) The discoverer of Neptune.. In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial = of a square matrix, A, named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier.

  5. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].

  6. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    The spectrum of T, denoted σ T, is the multiset of roots of the characteristic polynomial of T. Thus the elements of the spectrum are precisely the eigenvalues of T, and the multiplicity of an eigenvalue λ in the spectrum equals the dimension of the generalized eigenspace of T for λ (also called the algebraic multiplicity of λ).

  7. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  8. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Using them in reverse to express the elementary symmetric polynomials in terms of the power sums, they can be used to find the characteristic polynomial by computing only the powers and their traces. This computation requires computing the traces of matrix powers A k {\displaystyle \mathbf {A} ^{k}} and solving a triangular system of equations.

  9. Frobenius normal form - Wikipedia

    en.wikipedia.org/wiki/Frobenius_normal_form

    On the other hand, this makes the Frobenius normal form rather different from other normal forms that do depend on factoring the characteristic polynomial, notably the diagonal form (if A is diagonalizable) or more generally the Jordan normal form (if the characteristic polynomial splits into linear factors). For instance, the Frobenius normal ...