Search results
Results from the WOW.Com Content Network
The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.
The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...
Use of NASA logos, insignia and emblems is restricted per U.S. law 14 CFR 1221.; The NASA website hosts a large number of images from the Soviet/Russian space agency, and other non-American space agencies.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Winfried Otto Schumann (May 20, 1888 – September 22, 1974) was a German physicist and electrical engineer who predicted the Schumann resonances, a series of low-frequency resonances caused by lightning discharges in the atmosphere.
However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases. [3] All systems, including molecular systems and particles, tend to vibrate at a natural frequency depending upon their structure; this frequency is known as a resonant frequency or resonance frequency.
A frequency vs. time plot (spectrogram) showing several whistler signals amidst a background of sferics as received at Palmer Station, Antarctica on August 24, 2005.A radio atmospheric signal or sferic (sometimes also spelled "spheric") is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges.
Schumann was known to be interested in musical cryptograms, best demonstrated in his piano suite Carnaval, Op. 9. Eric Sams suggests there are many other clues throughout Schumann's works, including a cipher for "C-A-E-S-A-R" in the opening chords of the Julius Caesar overture. [12]