Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms. It also reduces variance and overfitting.
More abstractly, learning curves plot the difference between learning effort and predictive performance, where "learning effort" usually means the number of training samples, and "predictive performance" means accuracy on testing samples. [3] Learning curves have many useful purposes in ML, including: [4] [5] [6] choosing model parameters ...
Collection of public documents, whitepapers and articles about APT campaigns. All the documents are publicly available data. This data is not pre-processed. The GitHub repository of the project contains a file with links to the data stored in box. Data files can also be downloaded here. [351] APT Notes arXiv Cryptography and Security papers
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
In machine learning (ML), boosting is an ensemble metaheuristic for primarily reducing bias (as opposed to variance). [1] It can also improve the stability and accuracy of ML classification and regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners. [2]
An individual rule is not in itself a model, since the rule is only applicable when its condition is satisfied. Therefore rule-based machine learning methods typically comprise a set of rules, or knowledge base, that collectively make up the prediction model.
For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.