Search results
Results from the WOW.Com Content Network
ilastik [1] is a user-friendly free open source software for image classification and segmentation. No previous experience in image processing is required to run the software. Since 2018 ilastik is further developed and maintained by Anna Kreshuk's group at European Molecular Biology Laboratory.
scikit-image (formerly scikits.image) is an open-source image processing library for the Python programming language. [2] It includes algorithms for segmentation, geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection, and more. [3]
SimpleITK is a simplified, open-source interface to the Insight Segmentation and Registration Toolkit (ITK). The SimpleITK image analysis library is available in multiple programming languages including C++, Python, R, [1] Java, C#, Lua, Ruby and Tcl.
ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning ...
Elastix is an image registration toolbox built upon the Insight Segmentation and Registration Toolkit (ITK). [2] It is entirely open-source and provides a wide range of algorithms employed in image registration problems. Its components are designed to be modular to ease a fast and reliable creation of various registration pipelines tailored for ...
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]
Version 3.0, supporting volumetric analysis of 3D image stacks and optional deep learning modules, was released in October 2017. [16] CellProfiler 4.0 was released in September 2020 and focused on speed, usability, and utility improvements with most notable example of migration to Python 3.
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...