enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knee of a curve - Wikipedia

    en.wikipedia.org/wiki/Knee_of_a_curve

    The knee of a curve can be defined as a vertex of the graph. This corresponds with the graphical intuition (it is where the curvature has a maximum), but depends on the choice of scale. The term "knee" as applied to curves dates at least to the 1910s, [1] and is found more commonly by the 1940s, [2] being common enough to draw criticism.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...

  4. Degree diameter problem - Wikipedia

    en.wikipedia.org/wiki/Degree_diameter_problem

    The size of G is bounded above by the Moore bound; for 1 < k and 2 < d, only the Petersen graph, the Hoffman-Singleton graph, and possibly graphs (not yet proven to exist) of diameter k = 2 and degree d = 57 attain the Moore bound. In general, the largest degree-diameter graphs are much smaller in size than the Moore bound.

  5. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A complete graph (denoted , where is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, . In a signed graph , the number of positive edges connected to the vertex v {\displaystyle v} is called positive deg ( v ) {\displaystyle (v)} and the number of connected negative ...

  6. Table of the largest known graphs of a given diameter and ...

    en.wikipedia.org/wiki/Table_of_the_largest_known...

    In graph theory, the degree diameter problem is the problem of finding the largest possible graph for a given maximum degree and diameter.The Moore bound sets limits on this, but for many years mathematicians in the field have been interested in a more precise answer.

  7. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  8. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut. The optimization variant is known to be NP-Hard. The opposite problem, that of finding a minimum cut is known to be efficiently solvable via the Ford–Fulkerson algorithm.

  9. Four-vertex theorem - Wikipedia

    en.wikipedia.org/wiki/Four-vertex_theorem

    The four-vertex theorem was first proved for convex curves (i.e. curves with strictly positive curvature) in 1909 by Syamadas Mukhopadhyaya. [8] His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has fourth-order contact with the curve; in general the osculating circle has only third-order contact ...