Search results
Results from the WOW.Com Content Network
The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [1]
There are two LLMs. One is the target LLM, and another is the prompting LLM. Prompting LLM is presented with example input-output pairs, and asked to generate instructions that could have caused a model following the instructions to generate the outputs, given the inputs. Each of the generated instructions is used to prompt the target LLM ...
In the field of artificial intelligence (AI), the Waluigi effect is a phenomenon of large language models (LLMs) in which the chatbot or model "goes rogue" and may produce results opposite the designed intent, including potentially threatening or hostile output, either unexpectedly or through intentional prompt engineering.
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)
Vicuna LLM is an omnibus Large Language Model used in AI research. [1] Its methodology is to enable the public at large to contrast and compare the accuracy of LLMs "in the wild" (an example of citizen science ) and to vote on their output; a question-and-answer chat format is used.
The goal of response prompting is to transfer stimulus control from the prompt to the desired discriminative stimulus. [1] Several response prompting procedures are commonly used in special education research: (a) system of least prompts, (b) most to least prompting, (c) progressive and constant time delay, and (d) simultaneous prompting.