Search results
Results from the WOW.Com Content Network
Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...
At the turn of the twentieth century, Srinivasa Ramanujan is a struggling and indigent citizen in the city of Madras in India working at menial jobs at the edge of poverty. . While performing his menial labour, his employers notice that he seems to have exceptional skills in mathematics and they begin to make use of him for rudimentary accounting tas
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
The Man Who Knew Infinity: A Life of the Genius Ramanujan is a biography of the Indian mathematician Srinivasa Ramanujan, written in 1991 by Robert Kanigel.The book gives a detailed account of his upbringing in India, his mathematical achievements and his mathematical collaboration with mathematician G. H. Hardy.
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first discovered and proved by Leonard James Rogers ( 1894 ), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913.
In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta.
In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function. Page from Ramanujan's notebook stating his Master theorem.
Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as