enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit variance) is often denoted with the Greek letter . [8] The alternative form of the Greek letter phi, , is also used quite often.

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    However, this use is not standard among probabilists and statisticians. In other sources, "probability distribution function" may be used when the probability distribution is defined as a function over general sets of values or it may refer to the cumulative distribution function, or it may be a probability mass function (PMF) rather than the ...

  4. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Hoyt distribution, the pdf of the vector length of a bivariate normally distributed vector (correlated and centered) Complex normal distribution, an application of bivariate normal distribution; Copula, for the definition of the Gaussian or normal copula model.

  5. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Cumulative from mean gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549. Complementary cumulative

  6. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  7. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  8. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Specifically, if the mass-density at time t=0 is given by a Dirac delta, which essentially means that the mass is initially concentrated in a single point, then the mass-distribution at time t will be given by a Gaussian function, with the parameter a being linearly related to 1/ √ t and c being linearly related to √ t; this time-varying ...

  9. Gaussian measure - Wikipedia

    en.wikipedia.org/wiki/Gaussian_measure

    Gaussian measures with mean = are known as centered Gaussian measures. The Dirac measure δ μ {\displaystyle \delta _{\mu }} is the weak limit of γ μ , σ 2 n {\displaystyle \gamma _{\mu ,\sigma ^{2}}^{n}} as σ → 0 {\displaystyle \sigma \to 0} , and is considered to be a degenerate Gaussian measure ; in contrast, Gaussian measures with ...