enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    If exponentiation is considered as a multivalued function then the possible values of (−1 ⋅ −1) 1/2 are {1, −1}. The identity holds, but saying {1} = {(−1 ⋅ −1) 1/2 } is incorrect. The identity ( e x ) y = e xy holds for real numbers x and y , but assuming its truth for complex numbers leads to the following paradox , discovered ...

  3. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.

  4. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations.

  5. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2 In mathematics , the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable ⁠ x {\displaystyle x} ⁠ is denoted ⁠ exp ⁡ x {\displaystyle \exp x} ⁠ or ⁠ e x {\displaystyle e^{x}} ⁠ , with the two ...

  6. Infinity - Wikipedia

    en.wikipedia.org/wiki/Infinity

    [1] [3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of integers. [4] In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object.

  7. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Also, characterisations (1), (2), and (4) for apply directly for a complex number. Definition (3) presents a problem because there are non-equivalent paths along which one could integrate; but the equation of (3) should hold for any such path modulo 2 π i {\displaystyle 2\pi i} .

  8. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Solving the inverse relation, as in the previous section, yields the expected 0 i = 1 and −1 i = 0, with negative values of n giving infinite results on the imaginary axis. Plotted in the complex plane , the entire sequence spirals to the limit 0.4383 + 0.3606 i , which could be interpreted as the value where n is infinite.

  9. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    When dealing with both positive and negative extended real numbers, the expression / is usually left undefined, because, although it is true that for every real nonzero sequence that converges to 0, the reciprocal sequence / is eventually contained in every neighborhood of {,}, it is not true that the sequence / must itself converge to either or .