Search results
Results from the WOW.Com Content Network
In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet .
ROT13 is a special case of the Caesar cipher which was developed in ancient Rome, used by Julius Caesar in the 1st century BC. [1] An early entry on the Timeline of cryptography . ROT13 can be referred by "Rotate13", "rotate by 13 places", hyphenated "ROT-13" or sometimes by its autonym "EBG13".
A message encoded with this type of encryption could be decoded with a fixed number on the Caesar cipher. [3] Around 800 AD, Arab mathematician Al-Kindi developed the technique of frequency analysis – which was an attempt to crack ciphers systematically, including the Caesar cipher. [2]
Download QR code; Print/export ... use the same key for encryption and decryption. Caesar cipher; ... public key for encryption and a private key for decryption.
All polyalphabetic ciphers based on the Caesar cipher can be described in terms of the tabula recta. The tabula recta uses a letter square with the 26 letters of the alphabet followed by 26 rows of additional letters, each shifted once to the left from the one above it. This, in essence, creates 26 different Caesar ciphers. [1]
The Caesar cipher is an Affine cipher with a = 1 since the encrypting function simply reduces to a linear shift. The Atbash cipher uses a = −1 . Considering the specific case of encrypting messages in English (i.e. m = 26 ), there are a total of 286 non-trivial affine ciphers, not counting the 26 trivial Caesar ciphers.
If the key size happens to have been the same as the assumed number of columns, then all the letters within a single column will have been enciphered using the same key letter, in effect a simple Caesar cipher applied to a random selection of English plaintext characters. The corresponding set of ciphertext letters should have a roughness of ...
Classical ciphers are typically vulnerable to known-plaintext attack. For example, a Caesar cipher can be solved using a single letter of corresponding plaintext and ciphertext to decrypt entirely. A general monoalphabetic substitution cipher needs several character pairs and some guessing if there are fewer than 26 distinct pairs.